Local Decoding and Testing for Homomorphisms
نویسندگان
چکیده
Locally decodable codes (LDCs) have played a central role in many recent results in theoretical computer science. The role of finite fields, and in particular, low-degree polynomials over finite fields, in the construction of these objects is well studied. However the role of group homomorphisms in the construction of such codes is not as widely studied. Here we initiate a systematic study of local decoding of codes based on group homomorphisms. We give an efficient list decoder for the class of homomorphisms from any abelian group G to a fixed abelian group H . The running time of this algorithm is bounded by a polynomial in log |G| and an agreement parameter, where the degree of the polynomial depends on H . Central to this algorithmic result is a combinatorial result bounding the number of homomorphisms that have large agreement with any function from G to H . Our results give a new generalization of the classical work of Goldreich and Levin, and give new abstractions of the list decoder of Sudan, Trevisan and Vadhan. As a by-product we also derive a simple(r) proof of the local testability (beyond the Blum-Luby-Rubinfeld bounds) of homomorphisms mapping Zp to Zp, first shown by M. Kiwi.
منابع مشابه
On natural homomorphisms of local cohomology modules
Let $M$ be a non-zero finitely generated module over a commutative Noetherian local ring $(R,mathfrak{m})$ with $dim_R(M)=t$. Let $I$ be an ideal of $R$ with $grade(I,M)=c$. In this article we will investigate several natural homomorphisms of local cohomology modules. The main purpose of this article is to investigate when the natural homomorphisms $gamma: Tor^{R}_c(k,H^c_I(M))to kotim...
متن کاملAn equivalence functor between local vector lattices and vector lattices
We call a local vector lattice any vector lattice with a distinguished positive strong unit and having exactly one maximal ideal (its radical). We provide a short study of local vector lattices. In this regards, some characterizations of local vector lattices are given. For instance, we prove that a vector lattice with a distinguished strong unit is local if and only if it is clean with non no-...
متن کاملList Decoding Group Homomorphisms Between Supersolvable Groups
We show that the set of homomorphisms between two supersolvable groups can be locally list decoded up to the minimum distance of the code, extending the results of Dinur et al who studied the case where the groups are abelian. Moreover, when specialized to the abelian case, our proof is more streamlined and gives a better constant in the exponent of the list size. The constant is improved from ...
متن کاملOn the pointfree counterpart of the local definition of classical continuous maps
The familiar classical result that a continuous map from a space $X$ to a space $Y$ can be defined by giving continuous maps $varphi_U: U to Y$ on each member $U$ of an open cover ${mathfrak C}$ of $X$ such that $varphi_Umid U cap V = varphi_V mid U cap V$ for all $U,V in {mathfrak C}$ was recently shown to have an exact analogue in pointfree topology, and the same was done for the familiar cla...
متن کاملG-dimension over Local Homomorphisms. Applications to the Frobenius Endomorphism
We develop a theory of G-dimension over local homomorphisms which encompasses the classical theory of G-dimension for finitely generated modules over local rings. As an application, we prove that a local ring R of characteristic p is Gorenstein if and only if it possesses a nonzero finitely generated module of finite projective dimension that has finite G-dimension when considered as an R-modul...
متن کامل